Differential involvement of Mrp2 (Abcc2) and Bcrp (Abcg2) in biliary excretion of 4-methylumbelliferyl glucuronide and sulfate in the rat.
نویسندگان
چکیده
The hepatic excretion of hydrophilic conjugates, end products of phase II metabolism, is not completely understood. In the present studies, transport mechanism(s) responsible for the biliary excretion of 4-methylumbelliferyl glucuronide (4MUG) and 4-methylumbelliferyl sulfate (4MUS) were studied. Isolated perfused livers (IPLs) from Mrp2-deficient (TR(-)) Wistar rats were used to examine the role of Mrp2 in the biliary excretion of 4MUG and 4MUS. After a 30-micromol dose of 4-methylumbelliferone, cumulative biliary excretion of 4MUG was extensive in wild-type rat IPLs (25 +/- 3 micromol) but was negligible in TR(-) livers (0.4 +/- 0.1 micromol); coadministration of the Bcrp and P-glycoprotein inhibitor GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] had no effect on 4MUG biliary excretion in wild-type rat IPLs. In contrast, biliary excretion of 4MUS was partially maintained in Mrp2-deficient rat IPLs. Recovery of 4MUS in bile was approximately 50 to 60% lower in both control TR(-) (149 +/- 8 nmol) and wild-type IPLs with GF120918 coadministration (176 +/- 30 nmol) relative to wild-type control livers (378 +/- 37 nmol) and was nearly abolished in TR(-) IPLs in the presence of GF120918 (13 +/- 8 nmol). These changes were the result of decreased rate constants governing 4MUG and 4MUS biliary excretion. In vitro assays and perfused livers from Bcrp and P-glycoprotein gene-knockout mice indicated that 4MUS did not interact with P-glycoprotein but was transported by Bcrp in a GF120918-sensitive manner. In the rat liver, Mrp2 mediates the biliary excretion of 4MUG, whereas both Mrp2 and Bcrp contribute almost equally to the transport of 4MUS into bile.
منابع مشابه
The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice.
The role of Mrp2, Bcrp, and P-glycoprotein in the biliary excretion of acetaminophen sulfate (AS) and glucuronide (AG), 4-methylumbelliferyl sulfate (4MUS) and glucuronide (4MUG), and harmol sulfate (HS) and glucuronide (HG) was studied in Abcc2(-/-), Abcg2(-/-), and Abcb1a(-/-)/Abcb1b(-/-) mouse livers perfused with the respective parent compounds using a cassette dosing approach. Biliary clea...
متن کاملDmd057190 1219..1226
Inhibition of bile acid transport by troglitazone (TGZ) and its major metabolite, TGZ sulfate (TS), may lead to hepatocellular accumulation of toxic bile acids; TS accumulation and hepatotoxicity may be associated with impaired TS biliary excretion. This study evaluated the impact of impaired transport of breast cancer resistance protein (Bcrp) and multidrug resistance–associated protein 2 (Mrp...
متن کاملMultiple mechanisms are involved in the biliary excretion of acetaminophen sulfate in the rat: role of Mrp2 and Bcrp1.
Previous reports have demonstrated that sulfate metabolites may be excreted into bile by the multidrug resistance-associated protein 2 (Mrp2, Abcc2). Although recombinant human breast cancer resistance protein (BCRP, ABCG2) has affinity for sulfated xenobiotics and endobiotics, its relative importance in biliary excretion of sulfate metabolites in the intact liver is unknown. In the present stu...
متن کاملIdentification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein.
Until recently, it was generally believed that the transport of various organic anions across the bile canalicular membrane was mainly mediated by multidrug resistance-associated protein 2 (MRP2/ABCC2). However, a number of new reports have shown that some organic anions are also substrates of multidrug resistance 1 (MDR1/ABCB1) and/or breast cancer resistance protein (BCRP/ABCG2), implying MDR...
متن کاملInvolvement of multidrug resistance-associated protein 2 (Abcc2) in molecular weight-dependent biliary excretion of beta-lactam antibiotics.
In the present study, we attempted to identify the membrane permeation process(es) primarily involved in the molecular-weight-dependent biliary excretion of beta-lactam antibiotics. A search of the literature indicated that the molecular weight threshold operates mainly in the transport process across bile canalicular membranes. We confirmed that biliary clearance of the model biliary-excretion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 319 1 شماره
صفحات -
تاریخ انتشار 2006